159 research outputs found

    Low Complexity Multiplier-less Modified FRM Filter Bank using MPGBP Algorithm

    Get PDF
    The design of a low complexity multiplier-less narrow transition band filter bank for the channelizer of multi-standard software-defined radio (SDR) is investigated in this paper. To accomplish this, the modal filter and complementary filter in the upper and lower branches of the conventional Frequency Response Masking (FRM) architecture are replaced with two power-complementary and linear phase filter banks. Secondly, a new masking strategy is proposed to fully exploit the potential of the numerous spectra replicas produced by the interpolation of the modal filter, which was previously ignored in the existing FRM design. In this scheme, the two masking filters are appropriately modulated and alternately masked over the spectra replicas from 0 to 2π\pi, to generate even and odd channels. This Alternate Masking Scheme (AMS) increases the potency of the Modified FRM (ModFRM) architecture for the design of a computationally efficient narrow transition band uniform filter bank (termed as ModFRM-FB). Finally, by combining the adjoining ModFRM-FB channels, Non-Uniform ModFRM-FB (NUModFRM-FB) for extracting different communication standards in the SDR channelizer is created. To reduce the total power consumption of the architecture, the coefficients of the proposed system are made multiplier-less using the Matching Pursuits Generalized Bit-Planes (MPGBP) algorithm. In this method, filter coefficients are successively approximated using a dictionary of vectors to give a sum-of-power-of-two (SOPOT) representation. In comparison to all other general optimization techniques, such as genetic algorithms, the suggested design method stands out for its ease of implementation, requiring no sophisticated optimization or exhaustive search schemes. Another notable feature of the suggested approach is that, in comparison to existing methods, the design time for approximation has been greatly reduced. To further bring down the complexity, adders are reused in recurrent SOPOT terms using the Common Sub-expression Elimination (CSE) technique without compromising the filter performance

    Insights into the Recent Advances in Nanomaterial Based Electrochemical Sensors for Pesticides in Food

    Get PDF
    Food safety is one of the rising concerns challenging all over the world and the analysis and determination of food contaminants to ensure the quality of food is highly inevitable. Electroanalytical sensors are a versatile tool for the accurate monitoring of food samples from the pollutants. Pesticides are one of the major sources of food pollutants and their impacts on human health is also very dangerous. This will trigger the researchers to develop more and more sensitive devices to monitor the level of various pesticides in various food samples, especially in agricultural products. Electrochemical sensors fabricated using nanocomposites offers more sensitive electrochemical response in the detection of these pesticides than traditional unmodified electrodes. This prompted us to write a mini review on the electrochemical sensors for pesticides in food using nanomaterials as modifiers from some of the previous reports. This review will motivate the experts working in this area to develop highly efficient sensing devices for pesticides, beneficial to the society as well

    Batch and continuous removal of heavy metals from industrial effluents using microbial consortia

    Get PDF
    Bio-removal of heavy metals, using microbial biomass, increasingly attracting scientific attention due to their significant role in purification of different types of wastewaters making it reusable. Heavy metals were reported to have a significant hazardous effect on human health, and while the conventional methods of removal were found to be insufficient; microbial biosorption was found to be the most suitable alternative. In this work, an immobilized microbial consortium was generated using Statistical Design of Experiment (DOE) as a robust method to screen the efficiency of the microbial isolates in heavy metal removal process. This is the first report of applying Statistical DOE to screen the efficacy of microbial isolates to remove heavy metals instead of screening normal variables. A mixture of bacterial biomass and fungal spores was used both in batch and continuous modes to remove Chromium and Iron ions from industrial effluents. Bakery yeast was applied as a positive control, and all the obtained biosorbent isolates showed more significant efficiency in heavy metal removal. In batch mode, the immobilized biomass was enclosed in a hanged tea bag-like cellulose membrane to facilitate the separation of the biosorbent from the treated solutions, which is one of the main challenges in applying microbial biosorption at large scale. The continuous flow removal was performed using fixed bed mini-bioreactor, and the process was optimized in terms of pH (6) and flow rates (1 ml/min) using Response Surface Methodology. The most potential biosorbent microbes were identified and characterized. The generated microbial consortia and process succeeded in the total removal of Chromium ions and more than half of Iron ions both from standard solutions and industrial effluents

    Cleanup of industrial effluents containing heavy metals : a new opportunity of valorising the biomass produced by brewing industry

    Get PDF
    Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed

    ECORISK2050: An Innovative Training Network for predicting the effects of global change on the emission, fate, effects, and risks of chemicals in aquatic ecosystems

    Get PDF
    By 2050, the global population is predicted to reach nine billion, with almost three quarters living in cities. The road to 2050 will be marked by changes in land use, climate, and the management of water and food across the world. These global changes (GCs) will likely affect the emissions, transport, and fate of chemicals, and thus the exposure of the natural environment to chemicals. ECORISK2050 is a Marie Skłodowska-Curie Innovative Training Network that brings together an interdisciplinary consortium of academic, industry and governmental partners to deliver a new generation of scientists, with the skills required to study and manage the effects of GCs on chemical risks to the aquatic environment. The research and training goals are to: (1) assess how inputs and behaviour of chemicals from agriculture and urban environments are affected by different environmental conditions, and how different GC scenarios will drive changes in chemical risks to human and ecosystem health; (2) identify short-to-medium term adaptation and mitigation strategies, to abate unacceptable increases to risks, and (3) develop tools for use by industry and policymakers for the assessment and management of the impacts of GC-related drivers on chemical risks. This project will deliver the next generation of scientists, consultants, and industry and governmental decision-makers who have the knowledge and skillsets required to address the changing pressures associated with chemicals emitted by agricultural and urban activities, on aquatic systems on the path to 2050 and beyond
    corecore